Spectroscopy Instrument Using Broadband Modulation and Statistical Estimation Techniques to Acount for Component Artifacts
Published: 2004
Abstract:
A spectroscopy instrument that uses spectra produced from random binary sequence modulated data. Statistical estimation techniques are used to achieve resolution enhancement, while properly accounting for the Poisson noise distribution and other artifacts introduced by a modulator or “chopper” or other system components. Indeed, a resolution similar to that of modern spectrometers can be achieved with a dramatic performance advantage over conventional, serial detection analyzers. Both static and dynamic behaviors are theoretically or measured experimentally accounted for in the model as determined. In one embodiment, the finite penetration of the field beyond the plane of the chopper leads to non-ideal chopper response, which is characterized in terms of an “energy corruption” effect and a lead or lag in the time at which the beam responds to the chopper potential.