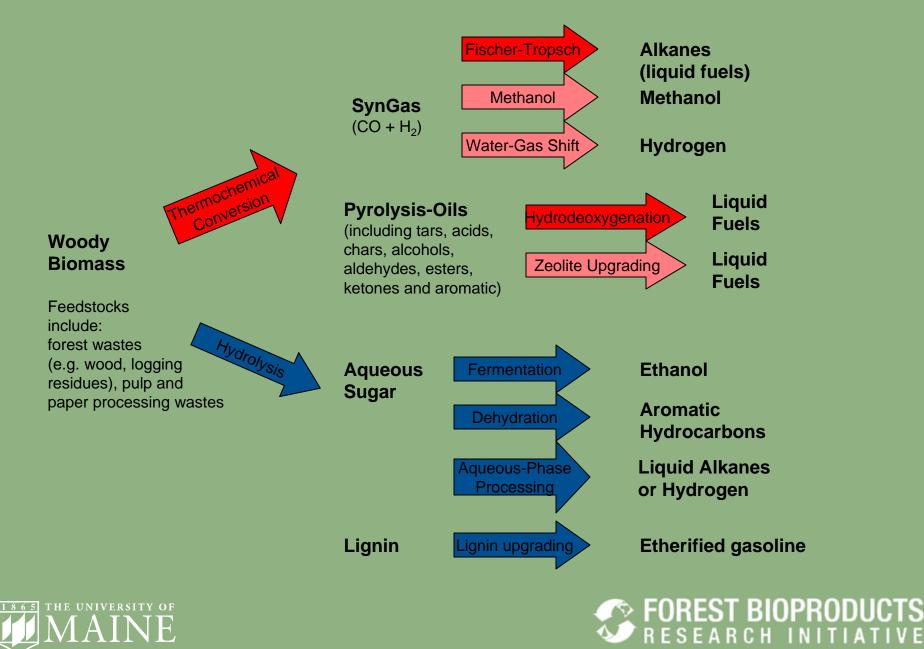


Thermal Thrust: Thermochemical Conversion of Woody Biomass to Fuels and Chemicals

M. Clayton Wheeler August 6, 2007


Opportunity

- Maine relies heavily on its forest resource
 - Forest Bioproducts Research Initiative
 - Forest sustainability
 - Process development
 - Economic viability
 - Public Relations/political support
- Industry recognizes the need to diversify its product base derived from the forest
- Infrastructure for aqueous conversion of woody biomass to fuels and chemicals
 - Fermentation processes funded through NSF
- Thermochemical conversion routes
 - Develop processing schemes compatible with existing Maine industries and infrastructure
 - Focus of DoE EPSCoR

Strategies for Fuels and Chemicals from Woody Biomass

Project Overview

- Thermochemical processing routes are catalysis-based
- Three major Projects:
 - Develop a rapid screening approach to identify new catalysts relevant to Maine's forest bioproducts infrastructure
 - Fischer-Tropsch Liquids catalysts
 - Pyrolysis Oil upgrading catalysts

Core Research Areas

Core Area 2 (W.J. DeSisto) Synthesis and Physical Characterization of Catalysts (Materials Science and Physics)

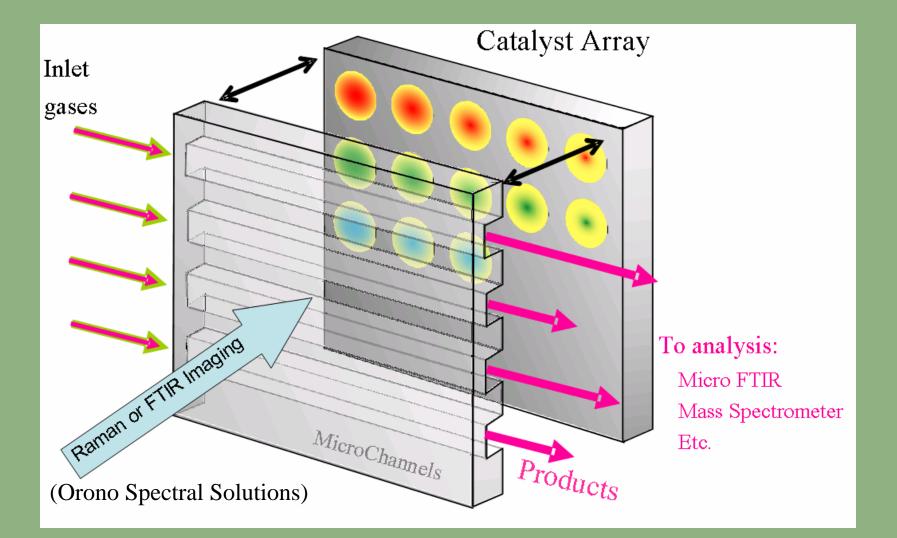
Core Area 1 (A. van Heiningen) Reaction Engineering and Innovative Processing Strategies (Chemical Engineering and Pulp and Paper Technology)

Core Area 3 (M.C. Wheeler) Microarrays Combinatorial Catalyst Screening (Microfluidics and Analytical Chemistry)

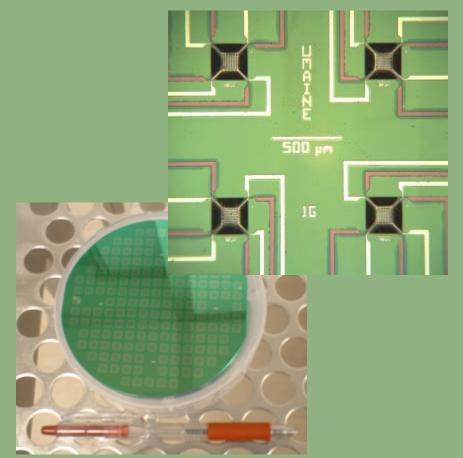
Core Area 4 (B.G. Frederick) Reaction Mechanisms And Kinetics (Chemistry)

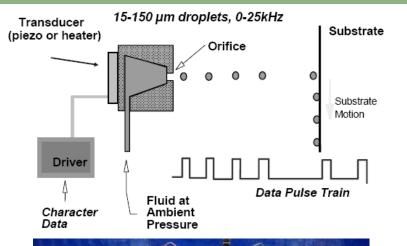
Research Thrust and Core Area Integration

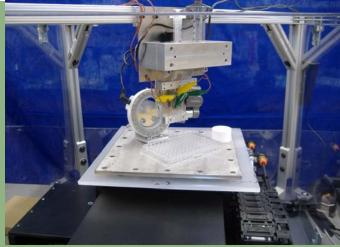
Title	Project 1 Micro-Array Combinatorial Catalyst	Project 2 Fischer-Tropsch Liquids from	Project 3 Pyrolysis Oil Upgrading and
Core Area 1 Reaction Engineering	Screening Define representative compounds, processing conditions, and thermodynamics as input for combinatorial studies. Define catalyst compositional matrices.	Biomass-Derived Syngas Compare effects of tar-like contaminants such as benzene on bulk catalyst activity.	Characterization Create pyrolysis oil from Maine biomass. Study kinetics and reaction products for model compounds (furfural and guaiacol). Characterize bulk hydro- deoxygenation catalysts using purchased and in-house produced pyrolysis oils.
Core Area 2 Catalyst Synthesis and Characterization	Synthesize compositional matrix for inkjet catalysts. Identify catalyst/support systems for bulk synthesis.	Synthesize and physically characterize bulk and inkjet deposited catalysts.	Synthesize and physically characterize bulk catalysts.
Core Area 3 Combinatorial Platform Integration and Methods	Develop microhotplate platform. Integrate inkjet deposition system. Couple microarray with FTIR and Raman. Analysis of combinatorial data.	Synthesize micro-support/catalysts on MACCS platform and evaluate arrays using model compounds	Synthesize micro-support/catalysts on combi platform and evaluate arrays using model compounds.
Core Area 4 Fundamental Reaction Mechanisms	Compare bulk to micro- support/catalyst performance and properties. Determine critical input parameters for catalytic screening evaluation.	Correlate bulk activity with model compounds to combinatorial results.	Correlate bulk activity with model compounds to combinatorial results. Characterize complex products and identify model compounds for pyrolysis oil upgrading.


Catalysis Rapid Screening (Project 1)

- Innovative micro-array combinatorial catalyst screening platform integrated with vibrational spectroscopies
 - Silicon-based processing of microhotplates as microreactors
 - Parallel microreactor evaluation
- Rapid ink-jet synthesis techniques for microsupport/catalyst library generation


Microarray Combinatorial Catalyst Screening with In-situ Spectroscopic Analysis


Combinatorial Catalyst Screening Platform

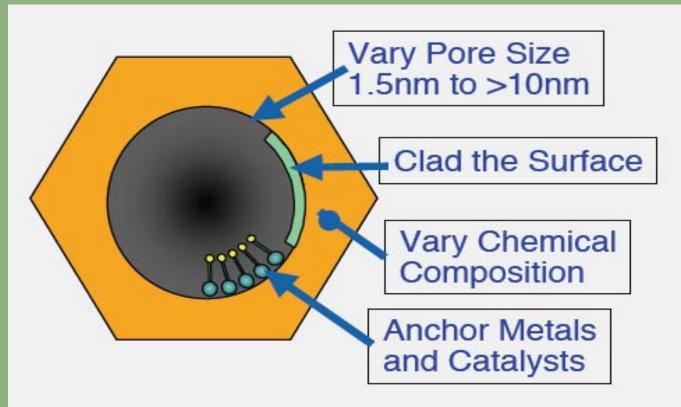


Individually addressable microreactors to be combined with in-situ infrared and Raman microscopy

Inkjet printing of sol-gel supports and metal salts

Zeomatrix ZeoJet Platform FOREST BIOPRODUCTS RESEARCH INITIATIVE

Fischer-Tropsch Liquids (Project 2)


- Synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials
 - Qualification of our rapid screening methodology
 - Novel rapid synthesis methods
 - Atomic level microstructural characterization
 - Tar tolerant catalysts needed for woody biomass-derived syngas
 - Combined reaction/separation
- Fundamental interactions between model compounds and the catalyst/support surface
 - Binding strength
 - Size exclusion

Catalyst Preparation and Physical Characterization

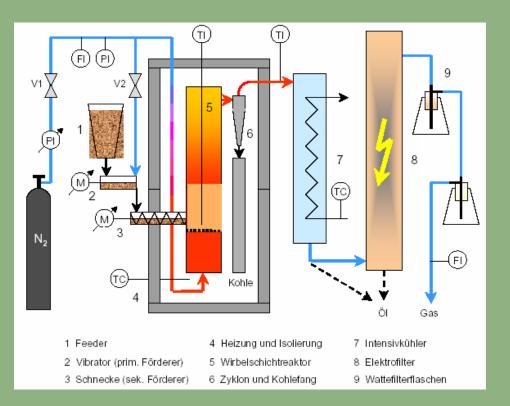
Pore size controlled metal oxide nanostructures

- higher activity/selectivity
- poison tolerant/longer life
- improved regenerability
- combined reaction/separation

REST BIOPROD

RCH INII

Pyrolysis Oil Upgrading (Project 3)


- Pyrolysis oil generation and characterization from Maine biomass
- Synthesis and characterization of novel support/catalysts for hydro-deoxygenation of pyrolysis oil
 - Kinetics and reaction products with model compounds (furfural and guaiacol)
 - Rapid screening of ink-jet printed catalyst libraries
 - Catalyst activity and resistance to poisoning
 - Upgrading and analysis of complex pyrolysis oil mixtures

FOREST BIOPRODU

- Process development (catalyst lifetime)
- Physical (viscosity), elemental (C/N/O/H) analysis
- Spectroscopic analysis (NMR, IR, MS)
- Reaction mechanism studies

Maine Pyrolysis Oil Characterization and Pilot Reactor Studies

University of Hamburg Lab-scale Fast Pyrolysis Reactor

Reaction Mechanism Studies

- Product characterization
- In-situ FTIR
- AMI-200 catalyst characterization unit
 - Catalyst surface area with flow BET
 - Reduction/oxidation pretreatment
 - Temperature programmed reaction
 - Catalyst aging

Altamira Instruments AMI-200

Participants

- UMaine
 - H. Pendse, Pl
 - M. C. Wheeler, Co-I
 - W. J. DeSisto Co-I
 - B. G. Frederick Co-I
 - A. van Heiningen Co-I
 - R. J. Lad
 - S. D. Collins
- Colby T. W. Shattuck
- Bates R. N. Austin
- Bowdoin E. A. Stemmler

- Maine Small Businesses
 - Zeomatrix
 - Orono Spectral Solutions
- Oak Ridge National Laboratory
 - Nanomaterials and materials characterization

FOREST BIOPRODUC1

ABCH INITI

- NSF:Research Experience for Undergraduates
- Orono High School Juniors

	Contributing Disciplines		2	3	4	5	6	7	8	9	10	11	12
Core Research Areas			UMAINE Avh MCW WJD BGF SDC RJL						Businesses ZEO OSS				LAB ORNL
Reaction Engineering & Process Integration	Chemical Engineering, Chemistry & Pulp & Paper Technology			Х	X					Χ		Χ	
Synthesis & Physical Charactrization of Novel Catalysts	Material Science, Chemistry, & Physics						X	Χ	X		Х		Χ
Combinatorial Catalyst Screening using Microarrays & in-situ spectroscopy	Microfludics, Spectroscopy & Analytical Chemistry				X			Χ	X				
Fundamental Reaction Mechanisms and Kinetics Model Ststems	Chemistry, Surface Science, & Chemical Engineering	X	Χ	X						X		X	

Leader Co-Leader Team Member X

Combined Advisory Board

DoE EPSCoR Members

- Jennifer Holmgren UOP LLC
- Del Raymond Weyerhaeuser (retired)

Additional FBRI Members

- Paul Davis
- David Thompson
- Rob Bryan
- Tom Doak
- Sean Mahoney
- Ken Kehrer
- Steve Schley
- Alfred Carlson
- Jay Vreeland

Plum Creek Idaho National Laboratory Maine Audubon Small Woodlot Owners Association of Maine (SWOAM) Conservation Law Foundation Armstrong World Industries Seven Islands Land Company Tate & Lyle SAPPI (retired)

FOREST BIOPRODUCTS

