

Influence of Hemicellulose Extraction on Suitability for Oriented Strand Board (OSB) Production

Rory H. Jara^a Juan Paredes^b Adriaan van Heiningen^a Stephen Shaler^b

^a Department of Chemical and Biological Engineering

^b Advanced EngineeredWood Composites Center

Outline

Background
 Objectives
 Experimental procedures
 Results and discussions
 Conclusions

OSB Process
Wood components
Chemical composition and wood strength

OSB Process

Modified OSB Process

Wood Components

Hardwood (% o. e	d. wood) 🖓
Cellulose ^a	41.0 - 51.0
Lignin ^a	21.5 – 31.0
Hemicelluloses ^a	20.0 - 34.5
Ash ^b	0.2 - 1.0
Softwood (% o. d	l. wood)
Cellulose ^a	33.0 – 42.0
Lignin ^a	27.0 – 32.0 Ó
Hemicelluloses ^a	26.0 - 33.0
Ash ^b	0.1 – 0.5

(M. Åkerholm and L. Salm

^b Rowell, R., 2005

^a Sjostron, E., 1993

Wood Components

(Lawoko et al. Biomacromolecules 6(6) 3467-3473, 2005)

(Sweet et al. Holzforschung 53 (1999) 311-317)

Chemical composition and wood strength

- Molecular level depends on individual components of the cell wall
- Cellulose greatest polymeric chain and higher DP
- Lignin is a nature's adhesive. Hydrophobic polymer.
- Cellulose and lignin are the main structural wood components.
 Hydrogen bonds are important for providing rigidity.
- Hemicelluloses are a series of carbohydrate molecules with lower DP than cellulose. They exhibit hydrogen bonding.
- Early degradation of hemicelluloses affect the wood strength (Curling at al., Forest Products Journal, Vol. 52, No 78, 2002)

Issues to be considered

 Mechanical properties of OSB must be maintained after hemicellulose extraction
 The extraction process must minimize degradation of both cellulose and lignin

Objective

 Determine how specific variables in the OSB strand extraction process (namely, pH, temperature, time and strand thickness) affect hemicellulose yields and characteristics of cellulose and lignin in the wood

Procedure

Experimental Procedures Wood material preparation

 Red Maple tree (hardwood)
 Stranding process at AEWC Center
 Wood material air-dried

Experimental Procedures Lab Extraction

MAINE

Chemical analysis procedure

Experimental Procedures Yield Determination

 $Yield^{sp} (\%) = \frac{solid residue (o.d.) after extraction}{wood (o.d.) before extraction} *100$

 $Yield^{lp} (\%) = \frac{S.C._{fd} * Total weight extract}{wood (o.d.) before extraction} *100$

Results

Water extraction yield
 Mass Balance
 OSB panels and physical/mechanical properties

Results: Water extraction yield

Water Extraction - Yield vs Temperature

Results: Water extraction yield Severity Factor (Ro)

• Proposed for Overend and Chornet, 1987)

Where, t: Time (minutes) T: Temperature (°C)

Results: Water extraction yield

Water Extraction - Yield vs Temperature

Results: Water extraction yield

Severity Effect on pH Extraction

Lignin removed from wood

Department of Chemical and Biological Engineering

1865

Mass Balance Hemicelluloses 160.00 140.00 120.00 Sugar (mg/g wood o.d.) 100.00 80.00 60.00 40.00 P 20.00 -0.00 2.70 3.30 3.50 2.50 2.90 3.10 3.70 3.90 4.10 Severity Factor (Log(Ro)) - Arabinan-L.P. 🔥 Galactan-L.P. 🔶 Xylan-L.P. — Mannan-L.P. → Arabinan-S.P. → Galactan-S.P. → Xylan-S.P. —<u></u>— Mannan-S.P.

1865 THE UNIVERSITY

Results: OSB Panels Manufacture of OSB Panels

Results: OSB Panels Manufacture of OSB Panels

Panel manufacturing was done at AEWC Center following internal procedures: Weight: 1.28 kg

Adhesive: pDMI, 4% o.d.w. Density: 38pcf, at 0% MC

Results: OSB Panels Physical Properties

Tests were done following ASTM D 1037 specifications.

Moisture Content Behavior

Results: OSB Panels Mechanical Properties

Tests were done following ASTM D 1037 specifications.

Conclusions

Extraction with pure water

- Degradation of cellulose is not significant
- Xylan contribute significantly more to the total hemicellulose yield.
- Continued hydrolysis of carbohydrates
- Further research is necessary to understand changes in physical and mechanical properties of OSB

Mass Balance

Cellulose	= [Glucan – Mannan/1.7]/(wood weight)
Hemicellulose	= Total Sugar/(wood weight) - Cellulose
Xylan	= [Xylose*(132/150)+UA*0.6*(132/176)]

