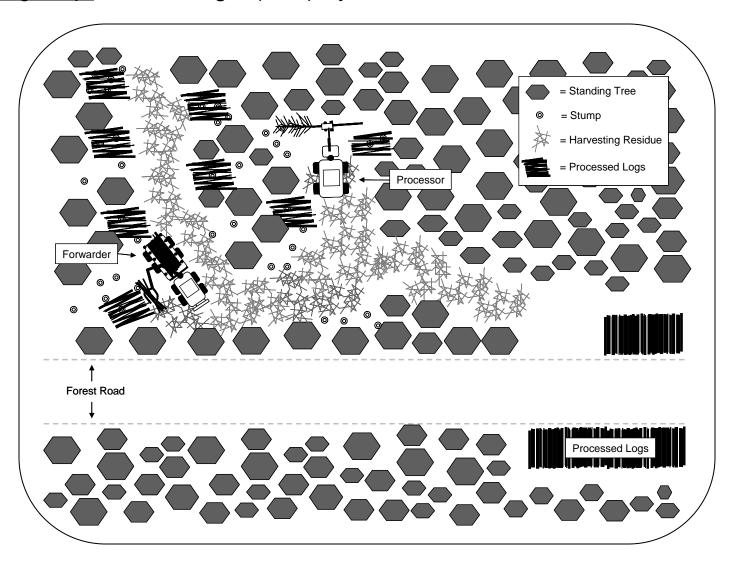
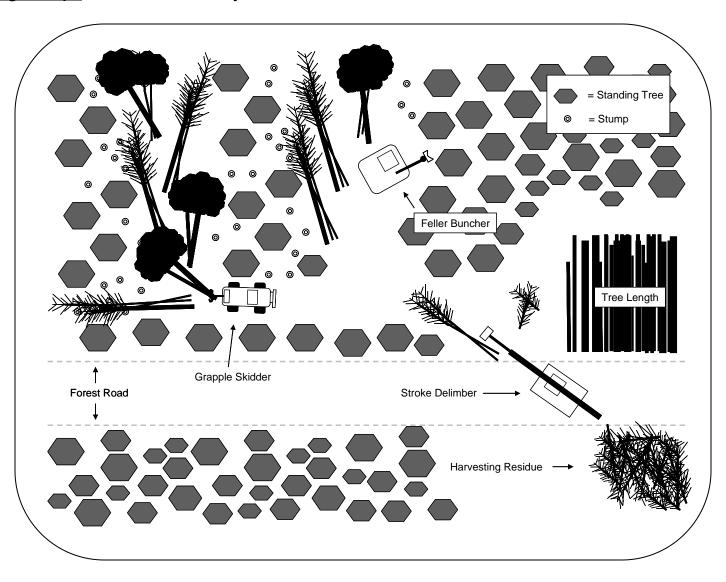

Common Biomass Conversion Systems

Alternative Transport Step: Tractor-Truck and Open Top Chip-Van



Harvesting Step: Cut-to-Length (CTL) System



Harvesting Step: Cut-to-Length (CTL) System

Common Biomass Conversion Systems

Harvesting Step: Mechanical System

Accumulation Step: Bundler & Forwarder

Processing Step: Deferred till Manufacturing Facility

Transport Step: Tractor-Truck and Log Trailer

Alternative Accumulation Step: Forwarder

Processing Step: Whole-Tree Chipper & Loader on Crane Carrier

Processing Step: Whole-Tree Chipper & Loader on Crane Carrier

Transport Step: Tractor-Truck and Chip-Van

Strengths

- •Familiar with working and utilizing material in the forest environment
- "Recent" transition to mechanization
- •Complimentary business operations and infrastructure
 - Garage and mechanical staff
 - Lowbeds
 - Office and administrative staff

Weaknesses

- •Use to handling and utilizing roundwood products, not harvesting residue
- •Chippers and grinders break down frequently and can be complex to work on
- •Limited supply of <u>quality</u> operators

Opportunities

- Increase total harvest volume
 - •Harvesting residue is estimated to represent 10-20% of roundwood volume (Bently et. al, 2004 & REC, 2007)
- Market diversity
- Decrease turn time and fuel consumption for grapple skidders
 - •Skidding harvesting residue back into the woods adds approximately 1 to 1.5 minutes to every turn.

Threats

- •Harvesting residue is often brought back into the skid trails to minimize impact to wet areas
 - Increased downtime associated with weather
- •Larger roadside landings
- Market failure
 - Stuck w/ specialized equipment
- Decrease delimber productivity

Establishment of Biomass Processing Operations

Framework for contractors to consider:

- Business plan
 - Demand (e.g., purchasing facilities)
 - Resource Supply (e.g., wood volume)
 - Competitors (e.g., other biomass processing companies)
 - Cost and Revenue projections
 - •Financing (e.g., sources of funds)
- Production Balancing
 - •For example:
 - •Annual logging roundwood production = 100,000 tons
 - •Estimated Harvesting Residue production = 15,000 tons
 - •Minimum Economic Chipper production = 35,000 tons
 - •Gap Harvesting Residue volume = 20,000 tons

Establishment of Biomass Processing Operations

Framework for contractors to consider:

- •Fit with Existing Operations
 - Compatible processing and transport options with existing harvesting equipment
 Implications on trucking costs (e.g., backhaul options)
 - Complimentary to existing business operations and infrastructure
- New or Used Equipment
 - •Trade offs between ownership expenses (e.g., loan payments, insurance, etc.), machine utilization, and maintenance and repair costs.
 - Cost volatility higher for used equipment
- Risk Management
 - Leasing equipment
 - Contract terms (e.g., long-term supply, repurchase, take-or-pay)
 - Purchasing equipment with alternative uses

Establishment of Biomass Processing Operations

Public Sector Support or Promotion of Biomass Processing Operations:

- Promote a healthy and stable wood bioproducts industry
- •Lower ownership costs through interest rate reductions
 - Maine Forest Service BMP Direct Link Loan program
- •Establish a **cost share** program to reduce start-up costs
 - Business plans
 - Recruiting operations
 - Creating and reviewing contracts
- Facilitate Knowledge Transfer & Other Education Related Activities
 - Workshops
 - Technical writings
 - Equipment demos

Concluding thoughts

- •Harvesting residue is an import raw material source for wood bioproducts
- •There are four steps associated with utilizing harvesting residue:
 - •Harvesting, Accumulation, Processing, and Transport
- •Utilization of harvesting residue is more expensive on CTL harvest systems than whole-tree systems because the harvesting residue is dispersed throughout the block, opposed to centralized alongside the road.
- SWOT analysis well balanced
- •Careful planning and use of risk management tactics can minimize threats and weaknesses.
- •A strong and stable industry is critical to support and promotion of biomass processing operations

